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Abstract 

This report discusses the implementation and testing process of a tabletop absorption-type 

dynamometer design dedicated to measuring the power characteristics of a DC motor with a 

rated power range of 0-50W and a torque range of 0.01-0.3 Nm. The report starts with defining 

a dynamometer and providing design limitations. Subsequently, the design configuration is 

explained, and the advantages and disadvantages of the selected design are listed. Moreover, 

the detail of purchased items and corresponding expenditure amounts are given. Then, critical 

activities carried out during the assembly process are highlighted. The following parts briefly 

explain the working mechanism and specifications of each mechanical or electrical component. 

On the other hand, written computer code is elaborated for the acquisition, assessment, and 

visualization of data from sensors. The results obtained from the testing are provided and 

discussed. Finally, potential application areas of the project are given an emphasis on possible 

future improvements is made. 
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1. Introduction 

A device that simultaneously measures a rotating object's torque and speed to calculate its 

power is known as a dynamometer. Two types of dynamometers exist: absorption 

dynamometers, as shown in Figure 1, and transmission dynamometers. [1] 

 

 

Figure 1: Example of absorption type dynamometer [2] 

 

Absorption dynamometers measure torque through mechanical friction, fluid friction, or 

electromagnetic induction. In contrast, transmission dynamometers measure torque through the 

elastic twist of a shaft or by inserting a specific torque meter between shaft portions [1]. In 

various industries, dynamometers are utilized for measurement purposes, including the 

automotive industry and manufacturing. However, the acquisition of convenient and 

appropriate dynamometers and systems for testing small-scale motors can be both rare and 

expensive, leading to a waste of time and/or money for customers and designers in search of 

motors with specific specifications due to lack of information on the power and torque 

characteristics of small-scale motors. In order to address this problem, a tabletop absorption-

type dynamometer, dedicated explicitly to measuring the power characteristics of DC motors 

with a rated power range of 0-50 W and a torque range of 0.05-0.3 Nm, was designed and 

implemented. During the design process, four significant goals were determined to be met. 

Firstly, ease of installation and storage is to be achieved by designing a tabletop dynamometer. 

Secondly, the design must allow for easy mounting of the testing motor, enabling the testing of 

various motors with ease. Thirdly, compatibility with various shaft diameters must be 

incorporated into the design, allowing for testing motors with different shaft diameters. Lastly, 

the design should allow for cost minimization in order for the feasibility of prototype 

construction. The cost of the dynamometer was determined to be kept below 3000₺, and the 

length and width were determined to be 60 cm and 45 cm, respectively. The torque range of the 
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test motors was determined to be 0-0.3 Nm. In literature, several similar studies, such as 

"Design and Implementation of a Small Electric Motor Dynamometer for Mechanical 

Engineering Undergraduate Laboratory" by Aaron Farley [3] and "Design of a Small Electric 

Motor Dynamometer" by William A. Black Jr [4], can be found and have been used as 

references. However, the approach taken in this project differs from those in the literature in 

terms of using a DC motor as a brake mechanism and utilizing an Arduino for data acquisition. 

 

2. Design & Cost 

This section involves overall design configuration and cost analysis, respectively. In the 

configuration part, a simple schematic of the overall design is provided to illustrate the working 

mechanism and make it more comprehensible, in addition to a pros and cons table in which the 

design's advantages and disadvantages are highlighted. Subsequently, another table is provided, 

listing all expenditure items in the cost analysis section. 

2.1 Overall Design Configuration 

The block diagram of the system is provided in Appendix A. As shown in the diagram, there are 

two power units, each dedicated to supplying energy to the test and brake motor, respectively. 

The speeds of the motors are controlled via PWM dc motor speed controllers, and the 

information about the electrical power applied to the motors is acquired with the help of power 

meters. There are two shafts, namely Shaft 1 and Shaft 2, extending from each motor. The shafts 

are connected with a coupler that works as an intermediary to transfer energy. The magnet that 

is attached to the coupler is utilized to measure the rotational speed of the test motor. The 

measurement is done by so using a linear hall effect sensor. The magnetic field originating from 

the magnet attached to the coupler is detected by the Hall effect sensor in a certain vicinity. 

Each time the magnet passes near the hall effect sensor, a signal is generated. Utilizing the time 

spanned between consecutive signals; the rotational speed is derived. The torque information 

of the test motor is obtained by utilizing a torque arm attached to the outer case of the brake 

motor. The force exerted at the tip of the torque arm is measured by a load cell, and then the 

signals are transferred to the microcontroller. The signals acquired both from the hall effect 

sensor and the load cell is interpreted and transferred to the MATLAB interface set up on a PC. 

Then, the measured rpm, torque, and power values of the test motor are plotted in MATLAB 

and displayed on the PC panel. 
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The advantages and disadvantages of the overall design configuration are listed in Table 1. 

 

Table 1: Pros and cons of the selected design 

PROS CONS 

Data acquisition via Arduino is viable. The setup is harder to build. 

Generating rpm/torque/power plots on PC is possible. The measurement is less precise. 

Power, rpm, and torque values are displayed all together on a 

single OLED screen. 
 

It takes up less space due to the sizes of the load cell and the 

Hall effect sensor 
 

It is cheaper due to the price of sensors  

The signals sent out by sensors are sufficiently clear.  

 

2.2 Cost 

A market analysis was conducted in order to determine the most cost-effective parts that meet 

the design criteria for the overall system. Aluminum sigma profiles were ordered from a local 

manufacturer that provides additional after-sale services such as cutting. The purchased profiles 

were cut in pre-selected lengths by the manufacturer for free. On the other hand, the DC motors, 

both brake, and test, were purchased from a second-hand store in Karaköy, which sells 

mechanic parts at substantially low prices compared to brand-new motors with comparable 

specs. In addition, medium-density fiberboard (MDF) as a support base was cut in desired shape 

and dimensions and supplied for free by a furniture manufacturer that we have acquaintance 

with. Also, the parts at our disposal, such as the microcontroller and adjustable DC power 

supply, were utilized to minimize the cost. All the other parts, including the PWM controller, 

hall effect sensor, load cell, multimeter, coupling (drill chuck), shaft adapters, bolts, screws, 

nuts, washers, and constant DC power supply, were purchased from relevant electronics and 

mechanics stores online. In the attempt to manage the cost, equipment presents in the lab and 

at our disposal was used for various applications such as milling, cutting, drilling, sanding, 

soldering, etc. So, no money was spent on any application whatsoever.  
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All expenditure items are listed in Table 2. 

 

Table 2. Cost Analysis 

Part List 
Purchase Detail 

Piece (#) Cost (₺) 

Brake Motor 1 450 

Test Motor 1 250 

Constant DC Power Supply 1 260 

Load Cell 1 155 

Multimeter 1 65 

Neodymium Magnet 1 10 

Hall Effect Sensor 1 25 

PWM Controller 1 85 

Cables 1 90 

Cable Connectors 1 100 

Drill Chuck 1 90 

Shaft Adapters 1 120 

Mounted Bearing 2 210 

Motor Holder 1 80 

Torque Arm 1 70 

Sigma Profile 1.2 (m) 170 

Corner Bracket 10 80 

T-slot Nut 22 70 

Bolt 10 60 

Screw 30 70 

Washer 24 50 

MDF Wood (18mm) 0.27 (m2) N/A 

Adjustable Power Supply 1 N/A 

Arduino Uno 1 N/A  
Total Cost 2560 

 

3. Implementation 

This section involves step by step explanation of the assembly process and elaboration on the 

overall system outlook, mechanical/electronic components that make up the system, and data 

acquisition method. 

3.1 Assembly 

Overall assembly of the system is supported by the frame. The frame consists of 6 aluminum 

sigma profiles which are connected to each other via corner brackets and T-slot nuts. Both of 

these connection elements are fully compatible with the selected type of sigma profile. While 

connecting these elements together, it was important to obtain perfect alignment to prevent 

undesired vibration and wobbling of the system, which could damage the system itself and the 

integrity of measurements. Therefore, the frame parts are connected to each other on a flat 
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surface. A set of M6 bolts are used and tightened gradually respectively to prevent tilting of the 

frame while tightening the bolts. The general frame structure can be seen in Appendix B. Once 

the frame parts are fastened, and alignment is acquired, the bearings are connected to the 

framework. The selected bearings from previous design steps needed to be changed during the 

final assembly process since the shaft diameters of the brake motor were different on both sides. 

The bearings with housings are manufactured within standards and have different housing 

dimensions with respect to the bore diameter of the bearing. The usage of bearings with 

different housing dimensions would create a vertical alignment problem, resulting in the brake 

motor shafts being non-parallel to the ground. Furthermore, the shaft of the brake motor, which 

is connected to the test motor shaft via coupling, does not have enough length to support both 

bearing and coupling (drill chuck) adapters simultaneously. As a result, we decided to mount 

the bearing over the coupling adapter. Thus, the length of the shaft is used more efficiently, 

providing enough space for coupling the adapter and bearing at the same time. This created a 

different situation from previous design steps; we used 15 mm bore diameter bearings with 

housings on both sides of the brake motor. The adapters also have different outer diameters; as 

a solution, we applied the lathing process to obtain two adapters with 15 mm outer diameters, 

as can be seen in Figure 2. Both the adapters and bearings have set screws to hold the shafts. 

We created several notches on the surface of the motor shafts to fix the coupling adapters and 

used the notches on the surface of the adapters to fix the bearings again with set screws.  

 

 

Figure 2: Lathing operation of coupling adapters 

 

As mentioned earlier, we used a drill chuck as coupling. The brake motor side of the drill chuck 

is mounted by coupling adapter with threads. The location of the load cell and the direction of 
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the rotation is designed such that it provides self-tightening condition. The adjustable side of 

the drill is connected to the test motor. Thus, test motors with different shaft diameters become 

compatible with the system. Undesired slipping motion of the shaft is prohibited by the triple-

jaw structure of the adjustable drill chuck. 

There are two components that we had to design and get manufactured: The test motor holder 

and the torque arm. SolidWorks 2021 is used as CAD software. Both components are produced 

from sheet metal with a 3 mm thickness. The dimensions of the test motor holder can be seen 

in Appendix C. The motor holder is attached to the frame with 2 x M6 bolts and T-slot nuts. 

Due to T-slot nuts, the subassembly could be shifted and fixed at the desired position. At the 

upper part of the holder, the slot for the test motor is placed. The slots are designed to provide 

the ability of vertical movement, so the user can slide the test motor up-down and avoid vertical 

misalignments between the test and brake motors. Likewise, the bolt holes are designed with 2 

mm of diameter and 2 mm of vertical sliding slots. However, there had been slight 

manufacturing issues resulting in misaligned bolt holes. Also, the casing of the brake motor 

mildly interfered with the framework. In return, we had to raise the motor assembly from the 

frame to ensure that the interference was eliminated, using a set of washers as spacers, providing 

3 mm of elevation. This raising process strengthened the motor holder bolt-hole misalignment. 

To compensate, we had to revise the slots of bolt holes via milling, as shown in Figure 3. 

 

 

Figure 3: Milling process of the motor holder 
 

The torque arm is the other special part of this project. Unlike the motor holder, the torque arm 

did not require further machining process after delivery. The design of the torque arm has 

changed since another brake motor is used within the project. The dimensions and geometry of 
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the torque arm can be found in Appendix D. The effective length of the torque arm was designed 

to be 0.18 m for the calculation of the torque by multiplying the force. However, slight 

deformations on the torque arm needle due to manufacturing processes caused nearly 4,5 mm 

of deviation; thus, the effective length of the torque arm became 0,1845 m and was used within 

MATLAB. The torque arm should be leveled with respect to the ground for the integrity of the 

calculations. Any diversions of the angle between the torque arm and the ground would cause 

the effective length of the torque arm and, as a result, inaccuracies in torque calculations. While 

attaching the torque arm to the brake motor casing with 2 x 4 mm diameter bolts, we checked 

with a water gauge to determine whether the torque arm was positioned correctly. 

The load cell is calibrated and used for force calculation applied by the torque arm. The torque 

arm and load cell combination are shown in Figure 4. 

 

 

Figure 4: Torque arm, load cell structure, and magnetic hall effect sensor 
 

The load cell is delivered with its own structure, flat plates at the top and below, and a strain 

gauge is located between them. While designing the overall system, we considered the height 

of the load cell structure. However, a mandatory raising process of the motor assembly from 

the framework resulted in increasing the height of the load cell structure. To obtain the correct 

height and level of the torque arm, we used four wooden discs placed under the load cell 

structure, providing 12 mm of elevation in total.  

The magnetic hall effect sensor can again be seen in Figure 4, indicated with a white elliptical. 

A magnetic hall effect sensor is used to measure the current RPM of the combined shafts of the 

brake and test motors. A neodymium magnet is attached to the coupling for the hall effect sensor 
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to detect each time the magnet passes. The sensor board is placed on top of a block between 

two motors to achieve the height required for healthy measurement conditions.  

To power the brake motor, a constant power supply is used and adjusted for 12 V output voltage, 

as can be seen in Figure 6, indicated with number 6. 12 V output voltage is transferred to the 

brake motor via a PWM controller and digital multimeter, illustrated in Figure 5. 

 

 

Figure 5: PWM controller in conjunction with a digital multimeter 
 

The PWM controller allows the user to transfer energy to the brake motor at the desired level 

with a knob, thereby breaking the test motor gradually. A digital multimeter is used to check 

the current voltage and current values that appear on the brake motor and be able to avoid the 

high currents that can damage the wiring harness and the motor itself while braking.  

An adjustable power supply is used to energize the test motor for given voltage levels, depicted 

as number 7 in Figure 6. An adjustable power supply ensures that a variety of test motors can 

be powered with the system, and different power levels can be used within the same test motor 

to see the effect of the input voltage on operating characteristics. The whole system is attached 

to a support base of MDF wooden board to ensure that the system is rigid, and the tabletop 

design is portable.  
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3.2 Overall System Outlook 

The final state of the overall system after the completion of the assembly phase is shown in 

Figure 6. For additional pictures of the overall system, please refer to Appendix E. 

 

 

Figure 6: Overall System Outlook 
 

In Figure 6, the key components that make up the system are represented by numbers and are 

listed and explained below: 

1. Hall Effect Sensor: A Hall effect sensor is a type of sensor that utilizes the Hall effect to 

detect the presence and magnitude of a magnetic field. The Hall sensor's output voltage is 

proportional to the intensity of the field. The phenomenon is named after an American 

scientist, Edwin Hall. The working principle is the following: A current is applied to a thin 

strip of metal in a Hall sensor. In the presence of a magnetic field perpendicular to the 

direction of the current, the charge carriers are deflected by the Lorentz force – resulting in 

a difference in voltage between the two sides of the strip [5]. There are several ways of 

measuring the rotational speed of a shaft, such as using an IR optocoupler, IR line tracking 

sensor, and industrial tachometer; however, the Hall effect sensor is the most optimum way 

due to budget concerns and minimum signal noise.  

2. Load Cell: A load cell is a force transducer that converts a force such as tension, 

compression, pressure, or torque into an electrical signal that can be measured and 

standardized. As the force applied to the load cell increases, the electrical signal changes 



11 

proportionally [6]. The load cell used in this project has a maximum load capacity of 5 kg. 

The maximum load capacity of the cell is sufficient since the maximum force exerted on 

the cell is around 0.5 kg. In addition, the cell has a percentage accuracy of 0.5. The load cell 

is also integrated with a signal amplifier, HX711 so that signals can be read from Arduino. 

Although there are several ways of measuring the torque of a shaft, such as using a torque 

meter, due to budget concerns and high compatibility with Arduino, a load cell was 

implemented for the measurement.  

3. Microcontroller: A microcontroller is a compact integrated circuit designed to govern a 

specific operation in an embedded system. The microcontroller used in the project that is 

responsible for data collection and data process is an Arduino Uno. The reason why an 

Arduino was selected is due to its high compatibility with sensors, user-friendly interface, 

and simplicity of its programming language. 

4. PWM Controller: PWM, pulse-width modulation, is a technique of breaking an electrical 

signal effectively into discrete parts to reduce the average power delivered by the signal. By 

turning the switch between supply and load ‘on’ and ‘off’ at a steady rate, the average value 

of voltage fed to the load is controlled. The shorter the switch is ‘on’ compared to ‘off’ 

periods, the lower the total power supplied to the load and vice versa [7]. The module 

selected for the project has an operating voltage of 12-40 V and an output current of up to 

10 A, which is sufficient for the brake motor used in this project. Although there are several 

ways of controlling the rotational speed of a DC motor, the most effective and precise way 

to do this is by using the PWM method.  

5. Multimeter: A multimeter is a tool used to detect the amount of electrical current and voltage 

difference in a circuit. The digital multimeter being used in this project is able to measure 

voltage up to 30V and current up to 10A and was connected to the PWM controller output 

to measure the current and voltage of the power being supplied to the brake motor. 

6. Constant Power Supply: A power supply is an electrical device that supplies electric power 

to an electrical load. The main purpose of a power supply is to convert electric current from 

a source to the correct voltage, current, and frequency to power the load. The constant power 

supply selected for the project is a DC power supply, which converts an AC input voltage 

to a DC output voltage. It is capable of supplying up to 360W of electrical power at 24V & 

15A and was deployed to supply energy to the brake motor. 

7. Adjustable Power Supply: The adjustable power supply selected for the project is a DC 

power supply with an integrated potentiometer to control the output voltage and current. It 

is capable of supplying electric power up to 300W at 30V & 10A. 
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8. PC: Data collected from sensors are transferred to the PC for data assessment and 

visualization. Acquired data is assessed in MATLAB environment through some form of 

mathematical functions and physics equations to generate meaningful results such as torque, 

mechanical power, and rpm. Generated results are plotted live on a graph, and the resulting 

chart is displayed on the PC screen. 

9. Brake Motor: The motor that is used to brake the rotating shaft through reverse rotation is 

referred to as “brake motor” throughout the report. The brake motor selected for the project 

is a DC servo motor with the following specs: maximum mechanical power output of 66W 

at 24V & 3.2A, a maximum rotational speed of 3000Rpm, and a stall torque of 0.3 Nm. 

10. Test Motor: The motor to be tested is referred to as the “test motor” throughout the report. 

The test motor selected for the project is a permanent magnet brushed DC motor with the 

following specs: maximum mechanical power output of 50W at 40V, a maximum 

rotational speed of 3300Rpm, and a stall torque of 0.17 Nm. 

11. Motor Holder: The motor holder used to fix the test motor in space was produced from 

iron sheet metal. 

12. Torque Arm: The torque arm used to transfer the absorbed energy to the load cell was 

produced from iron sheet metal. 

13. Coupling: A coupler is a link or rod transmitting power between two rotating mechanisms 

or a rotating part and a reciprocating part. Due to adjustability concerns with a range of 

shaft diameters, a drill chuck with an adjustable mouth of 3-13 mm was preferred as a 

coupling in this application. 

14. Bearing: A bearing is a machine element that constrains relative motion to only the desired 

motion and reduces friction between moving parts. Mounted bearings with a bore diameter 

of 15 mm were used to prevent the translational motion of the brake motor while allowing 

rotational motion. The housing is made out of zinc, whereas the bearing is of chrome steel. 

15. Shaft Adapter: Shaft adapters were used to adjust the thickness of the motor shafts to allow 

for an assembly with bearings and the drill chuck. The adapters are made out of steel. 

16. Sigma Profile: Aluminum sigma profiles were used as a supporting structure to fix the 

mechanical system and also to allow for an easy assembly of bearings and the motor holder. 

17. Corner Bracket: Aluminum corner brackets were used to fasten sigma profiles together.  

18. T-slot Nut: T-slot nuts were slid into profile channels and were used to position brackets 

and bearings. 

19. Support Base: Medium-density fibreboard was used as a support base to fix the overall 

system. 
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3.3 Code 

This project involves the use of an Arduino microcontroller to collect real-time data from the 

motors’ shaft and the load cell, which measure the motor's rotational speed (rpm) and the force 

it applies, respectively. The Arduino program reads the data from these sensors and sends it to 

a MATLAB program via a serial connection. The MATLAB program processes the data as it 

is received and plots it on a graph in real-time, with two y-axes, one for rpm and one for torque. 

The MATLAB program also calculates and plots the power output of the motor based on the 

rpm and force data. This allows for the analysis and visualization of the motor's performance 

in real time, enabling the identification of patterns, trends, and potential issues. While the 

relevant codes are presented in Appendix F and Appendix , the logic and working mechanisms 

of the codes are explained below. 

The Arduino code is designed to read and report the rpm and force data from a KY-024 linear 

magnetic hall effect sensor and HX711 load cell connected to an Arduino Uno microcontroller. 

The load cell is used to measure the break motor’s force applied to it, while the magnetic hall 

effect sensor is used to measure the rpm of a rotating object. 

The code begins by including the necessary libraries, "HX711.h" and "Arduino_JSON.h". The 

"HX711.h" library is used to interface with the load cell, and the "Arduino_JSON.h" library is 

used to create and manipulate a JSON object to store and transmit the data.  

Next, the code defines constants for the pins to which the load cell and Hall sensor are 

connected, as well as a calibration factor for the load cell. The code then creates variables for 

the HX711 scale object, Val1 and Val2 (which are used to store the sensor data), and an array 

for the sensor data. The code also creates variables for RPM calculation, including a float 

variable called "rps" and a volatile float variable called "rpm". The "pulses" variable is a volatile 

byte variable used to store the number of pulses from the Hall sensor, and "timeold" is an 

unsigned long variable used to store the previous time that the Hall sensor was triggered. The 

"s" variable is a float variable used to store the current time, and "refsig" is an int variable used 

to convert the analog signal from the Hall sensor to a digital signal. The "val" variable is a float 

variable used to store the digital value of the incoming analog signals, and "prev_val" is an int 

variable used to store the previous value of "val". The "t" and "cur_t" variables are volatile 

unsigned long variables used to store the current time and the previous time, respectively. The 

"counter" and "limit" variables are used to track the number of times that the current time is the 

same as the previous time and to set the rpm to 0 if the count exceeds a certain limit. 
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The code then defines a function called "rpm_calculator" to calculate the rpm based on the time 

between successive pulses from the Hall sensor. This function is triggered every time the Hall 

sensor sends a pulse (rising edge). 

In the setup function, the code initializes serial communication and sets the Hall sensor pin to 

INPUT_PULLUP mode. It then initializes the scale object and tares it (resets it to 0), and 

attaches an interrupt to the Hall sensor pin to trigger the "rpm_calculator" function. The code 

also initializes the variables used in the RPM calculation and delays for 2 seconds. 

In the main loop, the code creates a JSON object to store the data. It then reads the values from 

the load cell and Hall sensor and stores them in Val1 and Val2, respectively. The code then 

checks if the current time is the same as the previous time and increments the "counter" variable 

if it is. If the current time is not the same as the previous time, the "counter" variable is reset to 

0. If the "counter" variable exceeds the defined "limit", the rpm is set to 0, which means the 

motors are stopped by the user. Finally, using the stored variables, the code adds the rpm and 

force data to the JSON object and converts it to a string for transmission. In this way, the 

Arduino code was completed, and the data could be presented to MATLAB in a format that 

MATLAB could read. 

The MATLAB code is designed to work in conjunction with an Arduino program, which is 

responsible for collecting data from the motor and sending it to the MATLAB program over a 

serial connection. 

The code begins by setting up a serial connection to the Arduino program and initializing 

several variables that will be used to store and plot the data. The code then enters a while loop, 

which will continue to run as long as the plot is active. Within the loop, the code reads a string 

of data from the serial connection and attempts to decode it using the jsondecode function. If 

the data cannot be decoded, it is displayed on the screen. 

If the data can be decoded, it is stored in a variable called "data". The code then extracts two 

elements from the data variable, "rpm" and "force", which correspond to the rotational speed of 

the motor in revolutions per minute and the force applied to the motor, respectively. The code 

also increments two counter variables, "count_1" and "count_2", and stores the current elapsed 

time in two arrays, "time_1" and "time_2". The values of "rpm" and "force" are then stored in 

two additional arrays, "data_1" and "data_2", respectively. 
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The code then updates the plots on the screen to show the data collected so far. The x-axis of 

the plots is set to the elapsed time, while the y-axis of the first plot is set to the rpm of the motor, 

and the y-axis of the second plot is set to the torque applied to the motor. The code also sets the 

limits of the y-axes to fixed values, which are chosen based on the expected range of values for 

the rpm and torque data. 

After updating the plots, the code waits for a short period of time before repeating the loop. 

This delay is controlled by a variable called "delay", which is set to a value of 0.01 seconds. 

The purpose of the delay is to give the plots a chance to update and to allow the Arduino 

program to send new data to the MATLAB program. 

After the while loop ends, the code calculates the power output of the motor by multiplying the 

rpm data by the torque data and dividing it by 1000 to convert the result to watts. The power 

data is then plotted on a new graph, with the x-axis set to the elapsed time and the y-axis set to 

the power output of the motor. Finally, the code includes an optional line for users who want to 

save the collected data to a CSV file. Using this line, time, rpm, torque, and power values 

collected throughout the program can be presented to users as a CSV file after use. 

Overall, the Arduino and MATLAB codes provided in Appendix F and Appendix , respectively, 

are designed to collect and analyze data from a small-size DC motor in real time, using a 

combination of an Arduino program and MATLAB. The Arduino code measures and calculates 

the rotational speed of the motors and the force applied by a brake motor utilizing a magnetic 

hall effect sensor and a load cell, respectively. On the other hand, the MATLAB code reads 

data from the Arduino program over a serial connection, processes the data to calculate 

additional quantities of interest, and plots the data in real time for easy visualization. The code 

also saves the data to a file for later analysis. Therefore this project demonstrates the ability to 

collect and analyze real-time data from sensors using an Arduino microcontroller and a 

MATLAB program. It provides a useful tool for monitoring and studying the performance of a 

small-scale DC motors. 
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4. Results 

The project collects data from an Arduino microcontroller using a serial connection to a Matlab 

program. The Arduino program reads data from a hall sensor and load cell, creates a JSON 

object with the data, and sends it to the Matlab program via the serial port. The Matlab program 

decodes the data as a JSON object, extracts the rpm and force data, and stores it in variables. 

The data collection interval is determined by the speed of the main loop in the Arduino program 

and the delay variable in the Matlab program, which is currently set to 0.01 seconds or 100 

milliseconds. This interval can be adjusted by modifying the delay variable in the Matlab code. 

After we finished the project, we carried out two tests. Since we have only one test motor, we 

wanted to see the characteristics of the motor with two different input voltages. In the first test, 

we supplied the test motor with 12V.  

Figure 7 shows the RPM and Torque values obtained during the test. The test started with the 

test motor running with 12V. Then, the input voltage of the brake motor was increased slowly 

until the stall condition was obtained when RPM = 0. After the stall condition, the input voltage 

of the brake motor had been decreased again gradually until the brake motor stopped. The 

maximum torque value is obtained when the stall condition is achieved as proposed, which is 

equal to 459.03 mN.m. 

 

Figure 7: Torque and RPM Plot with 12V of Test Motor Input 

Figure 8 shows the power plot obtained during the test, again with a 12V input voltage of the 

test motor. As expected, the power value during stall conditions is zero since the power is a 
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product of torque and RPM. The maximum power value obtained after the motor stall, while 

decreasing the input voltage of the brake motor, equals 9.6432 W. At the same timestamp, the 

obtained values of torque and RPM are 171.16 mN.m and 538 RPM. Based on the results, we 

can say that the maximum power of the test motor fed with 12V is 9.6432 W, with 

corresponding torque of 171.16 mN.m and 538 RPM. 

 

Figure 8: Power Plot with 12V of Test Motor Input  

The second test was carried out similarly. The only difference was that the test motor was fed 

with 18V instead of 12V. Figure 9 shows the data obtained from the 18V test. The maximum 

torque is obtained similarly at the stall condition when RPM = 0 and equals 599,07 mN.m.  

 

Figure 9: Torque and RPM Plot with 18V of Test Motor Input 
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The power plot obtained during the 18V test is shown in Figure 10. The maximum power value 

was again obtained after the motor stall, near the point that the brake motor input voltage is 0V. 

During the 18V test, the maximum power was measured as 22.408 W, at t  = 25.296 s. At the 

maximum power point, the corresponding torque value was 280.08 mN.m, and the RPM = 764. 

 

Figure 10: Power Plot with 18V of Test Motor Input 

It has been observed that, in both of these tests, the maximum power value is obtained after the 

stalling process and near the point that the brake motor voltage input is 0. At this point, the 

power plot showed a sudden increase pattern, similar to a spike. This situation could be caused 

by measurement errors and instrumentation of the system, both of which are argued further in 

the discussion section. 

 

5. Discussion 

One of the goals of this project is to define the power characteristics of a DC motor. We obtained 

the power value for the test motor of 9.6432 W at 12V operation and 22.408 W at 18V operation. 

The power output of the test motor is indicated by the manufacturer as 50W at 40V input 

voltage. When the obtained data is compared with the value indicated by the manufacturer, the 

measured power characteristics are not contradictory to the manufacturer’s data, and the system 

operates with an acceptable error margin. The potential measurement errors may depend on 

various reasons, and these sources of error are discussed in this section. 
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The accuracy and consistency of the data collected in the project may be affected by several 

sources of error, including sensor error, noise, calibration error, and serial communication error. 

It is important to minimize these sources of error to ensure that the data is as accurate and 

consistent as possible.  

One possible source of error leading to inconsistency or inaccuracy in this project is sensor 

error. The sensors used to collect data, such as the hall sensor and the load cell, may not be 

perfectly accurate or may drift over time, leading to errors in the data. For example, the hall 

sensor may not always produce consistent output for a given rpm, or the load cell may drift over 

time and produce inaccurate force readings. To minimize sensor error, it is important to use 

high-quality sensors that are designed to be accurate and stable over time and to periodically 

recalibrate the sensors to ensure that they are producing accurate readings. 

Another possible source of error is noise, which can be caused by external factors such as 

electrical interference or mechanical vibrations. Noise can introduce errors into the data, 

making it less accurate and consistent. To minimize noise, it is important to eliminate sources 

of interference and reduce mechanical vibrations. This can be done by using shielded cables, 

filtering the sensor signals, and isolating the sensors from external sources of noise and 

vibration. 

Calibration error is another potential source of error that can lead to inconsistency or inaccuracy 

in the data. The load cell may not be perfectly calibrated, leading to errors in the force data. The 

load cell has a calibration factor that is used to convert the raw sensor readings to force values, 

and if this factor is not accurate, the force data will be incorrect. To minimize calibration error, 

it is important to carefully follow the instructions for calibrating the load cell and to use a known 

weight for calibration. It may also be useful to periodically recalibrate the load cell to ensure 

that it is producing accurate readings. 

Finally, a serial communication error may also lead to errors in the data. There may be errors 

in the serial communication between the Arduino and MATLAB programs, such as data loss 

or corruption during transmission or improper synchronization of the programs. To minimize 

serial communication error, it is important to use a reliable serial connection and to properly 

synchronize the Arduino and MATLAB programs. This can be done by using a high-quality 

serial cable, ensuring that the baud rate and other communication parameters are correctly 

configured, and using error-checking and correction protocols to ensure the integrity of the data. 
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During the studies with the project, it has been noticed that the RPM of the test motor differs 

depending on the brake motor’s electrical connection. When the brake motor is not running, 

PWM = 0, but plugged into the power supply, the RPM of the test motor is lower than the case 

that the brake motor is not connected to the power supply at all. This situation may be caused 

by the Back-EMF phenomenon, which is present within the brake motor while plugged into the 

power source, and the shaft of the brake motor is rotating due to the test motor rotation. Another 

possible reason for this situation is the integrity of the PWM controller module. The PWM 

controller might be ‘leaking’ unwanted voltage through the brake motor, which creates a 

braking condition even though the brake motor is not working. Both of these situations may 

disrupt the accuracy of the testing process. 

 

6. Conclusion 

The output of this project for individuals who participated was the successful creation of a 

system capable of measuring the specifications of a small-size DC motor using real-time data 

acquisition. This required the use of various mechanical engineering principles, such as the 

selection and use of motors, bearings, and other components, as well as the design and assembly 

of the system. The project also involved the use of data acquisition tools and software, such as 

Matlab and Arduino, as well as the creation of cable connections. Working in a group of three 

individuals, we were able to effectively manage our time and budget to complete the project. 

In addition to gaining technical skills, we also developed teamwork and project management 

skills through this project. Overall, the output of this project was a functional system that 

demonstrated our understanding of mechanical engineering principles and our ability to apply 

these principles in a practical setting. 

The purpose of this project is to develop a real-time data collection and analysis system for 

small-size DC motors. By using sensors and software, this system is able to measure and record 

various performance parameters of the motor, including rpm, torque, and power. The data 

collected by the system can be used for a variety of purposes, including quality control, research 

and development, motor control, and education. 

One potential application of this system is quality control. During the manufacturing process, 

it is important to ensure that small-size DC motors meet certain performance specifications. 

The real-time data collection and analysis capabilities of this project can be used to monitor and 

test the motors during production to ensure that they are operating within the specified range of 
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rpm and torque. This can help to identify and correct defects in the motors before they are 

shipped to customers, improving the overall quality of the product. 

Another potential application of this system is research and development. By conducting 

experiments and gathering data on the performance of small-size DC motors in a variety of 

conditions, researchers can study and improve the performance of these motors. For example, 

the motors can be tested under different load conditions, temperatures, and operating voltages 

to understand how these factors affect the motor's performance. This data can be used to 

optimize the design of the motors for specific applications or to develop new technologies for 

improving motor performance. 

In addition to quality control and research and development, this system can also be used for 

motor control in a variety of applications, such as robotics, drones, and other small-scale 

systems. By collecting real-time data on the performance of the motor, it is possible to adjust 

the power supplied to the motor in real-time based on the load, temperature, or other factors. 

This can improve the efficiency and reliability of the motor in these applications. 

Finally, this project can also be used as an educational tool to introduce students to the principles 

of real-time data collection and analysis. The ability to collect and analyze data in real-time can 

be a valuable skill in a variety of fields, including engineering, science, and technology. By 

using this project to teach students about real-time data collection and analysis, educators can 

help to prepare students for careers in these fields and give them the skills they need to be 

successful. In addition, students who learn about real-time data collection and analysis through 

this project may be more likely to pursue further studies in these areas, potentially leading to 

more advanced research and development efforts in the future. 

There are several ways in which the current project, which uses a hall sensor and a load cell to 

collect data on a motor, could be improved. One possibility is to add more sensors to the system. 

For example, temperature sensors could be used to monitor the temperature of the motor and 

its ambient environment, which could provide valuable information on the performance of the 

motor and help to detect overheating or other problems. Voltage sensors, on the other hand, 

could be used to monitor the power supplied to the motor and the voltage across it, which could 

be useful for understanding the electrical characteristics of the motor and for optimizing the 

power supply. 

Another option would be to use wireless communication to collect data from the motor. 

Currently, the Arduino and MATLAB programs communicate through a serial connection, but 
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using technologies like Bluetooth or WiFi could make it easier to collect data from the motor 

and allow the project to be used in a wider range of applications. For instance, the project could 

be used to test motors that are located far from the data collection equipment or to test motors 

that are in motion or are otherwise difficult to access. Additionally, wireless communication 

could facilitate the sharing of data with other devices or systems, such as cloud servers or mobile 

devices. 

Increasing the data collection rate is another avenue for improvement. Currently, the rate at 

which data is collected is determined by the speed of the main loop in the Arduino program and 

the delay variable in the MATLAB program. By using a faster microcontroller or by reducing 

the delay in the MATLAB program, it would be possible to obtain a more detailed and accurate 

picture of the motor's performance, which could be particularly useful for studying the 

dynamics of the motor. 

The use of machine learning algorithms could also enhance the project by enabling it to 

automatically identify patterns and trends in the data that are not immediately apparent. This 

could enable the project to detect and predict problems with the motor, such as impending 

failures, and provide recommendations for addressing these issues. For example, the project 

could be trained to recognize patterns in the data associated with different types of failures, 

such as bearing failure or winding failure and take preventative action to avoid or minimize the 

impact of such failures. 

Finally, expanding the range of tests carried out on the motor could provide a more 

comprehensive understanding of its capabilities and limitations. By testing the motor under a 

wider range of rpm, torque, and load conditions, it may be possible to optimize its performance 

for specific applications and better understand its behavior under different conditions. This 

could be particularly useful for identifying and addressing problems that may not be apparent 

under normal operating conditions. 
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Appendix A 

Schematic of Design Configuration 
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Appendix B 

Technical Drawing of Sigma Profiles 
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Appendix C 

Technical Drawing of Motor Holder 
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Appendix D 

Technical Drawing of Torque Arm 
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Appendix E 

Additional Pictures of Final System  
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Appendix F 

Arduino Code 

/*  
ME 492 - Engine Dynamometer 
Group E Senior Project 
*/ 
 
// include necessary libraries 
#include "HX711.h" 
#include "Arduino_JSON.h" 
 
// define constants for load cell and Hall sensor pins and calibration factor 
#define LOADCELL_DOUT_PIN  3 
#define LOADCELL_SCK_PIN  4 
#define Hall_Sensor_D 2 
#define calibration_factor  -1000 
 
// create variables for HX711 scale, Val1 and Val2, and array for sensor data 
HX711 scale; 
int Val1=0;      
int Val2=0; 
int i = 1; 
const int numsensor = 2; 
int data[numsensor]; 
 

// create variables for RPM calculation 
float rps; 
volatile float rpm; 
volatile byte pulses; 
unsigned long timeold; 
float s; 
int refsig=0;//for converting the analog signal coming from hall sensor to digital 
through arduino code 
float val;//the digital value of the incoming analog signals 
int prev_val=0; 
volatile unsigned long t,cur_t;//time variables 
int counter = 0; 
int limit = 10; 
unsigned long prev_t = 0; 
 
// function to calculate RPM 
void rpm_calculator()  { 
    cur_t=micros(); 
    rpm = 1000000*60/(cur_t-t); 
    t=cur_t; 
} 
 
// setup function 
void setup() { 
   
  // initialize serial communication and set Hall sensor pin to INPUT_PULLUP mode 
  Serial.begin(9600); 
  pinMode(Hall_Sensor_D,INPUT_PULLUP); 
  // initialize scale and tare it 
  scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN); 
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  scale.set_scale(calibration_factor); //This value is obtained by using the 
SparkFun_HX711_Calibration sketch 
  scale.tare(); //Assuming there is no weight on the scale at start up, reset the 
scale to 0 
   
  // attach interrupt and initialize variables for RPM calculation 
  attachInterrupt(digitalPinToInterrupt(2),rpm_calculator,RISING);  //attaching 
the interrupt and declaring the variables, one of the interrupt pins on Nano is 
D2, and has to be declared as 0 here 
    pulses=0; 
    rps=0; 
    rpm=0; 
    timeold=0; 
    s=0;     
   
  // delay for 2 seconds 
  delay(2000); 
 
} 
 
// main loop 
void loop() { 
  // create JSON object to store data 
  JSONVar json; 
   
  // read values from load cell and Hall sensor 
  Val2=(scale.get_units(1)); 
  Val1=digitalRead(Hall_Sensor_D); 
 
  // store sensor data in array 
  data[0] = Val1; 
  data[1] = Val2; 
   
  // check if current time is the same as previous time 
  // if it is, increment counter 
  // if it is not, reset counter 
  if(t==prev_t){ 
    counter ++; 
  } 
  else{ 
    counter = 0; 
  } 
  prev_t = t; 
 
  // if counter exceeds limit, set rpm to 0 
  if(counter > limit){ 
    rpm = 0; 
  } 
 
  // add rpm and force data to JSON object 
  json["rpm"] = rpm; 
  json["force"] = Val2*4.3; 
  String tmp = JSON.stringify(json); 
  Serial.println(tmp); 
   
} 
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Appendix G 

MATLAB Code 

% ME 492 - Engine Dynamometer 
% Group E Senior Project 
% real time data logger 
 
% clear all variables and close any open serial port connections 
clear all 
clc 
delete(instrfind({'Port'},{'COM10'})); 
 
% define plot properties and function variables 
plotTitle_1 = ''; 
xLabel_1 = 'Elapsed Time (sec)'; 
plotGrid = 'on'; 
delay = 0.01; 
l_torque_arm = 0.1845; % m 
g = 9.80665; 
% function variables 
time_1 = 0; 
time_2 = 0; 
data_1 = 0; 
data_2 = 0; 
count_1 = 0; 
count_2 = 0; 
 
% set up plot with two y-axes and legend 
hold on 
 
yyaxis left; 
plotGraph_1 = plot(time_1,data_1,'-bo',... 
    'LineWidth',1,... 
    'MarkerEdgeColor','k',... 
    'MarkerFaceColor',[.49 1 .63],... 
    'MarkerSize',2); 
ylim([0 1500]); 
ylabel('Motor Speed (rpm)','FontSize',15); 
 
yyaxis right; 
plotGraph_2 = plot(time_2,data_2,'-ro',... 
    'LineWidth',1,... 
    'MarkerEdgeColor','k',... 
    'MarkerFaceColor',[.17 .36 .21],... 
    'MarkerSize',2); 
ylim([0 750]); 
ylabel('Torque (mN.m)','FontSize',15); 
 
legend('rpm','torque') 
title(plotTitle_1,'FontSize',25); 
xlabel(xLabel_1,'FontSize',15); 
grid(plotGrid); 
 
hold off 
 
% open serial port 
s = serialport('COM10',9600); 
fopen(s); 
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% start timer 
tic 
i = 1; 
 
% loop until plot is active 
while ishandle(plotGraph_1)  
 
    % read data from serial as string and decode JSON object 
    data = fscanf(s, '%s');  
    try 
    data = jsondecode(data); 
    catch 
        disp(data); 
    end 
 
    % extract rpm and force data from JSON object 
    dat_1 = data.rpm; 
    dat_2 = data.force; 
     
    % extract elapsed time and update time and data arrays for rpm 
    count_1 = count_1 + 1; 
    time_1(count_1) = toc;  
    data_1(count_1) = dat_1;    
 
    % extract elapsed time and update time and data arrays for torque 
    count_2 = count_2 + 1; 
    time_2(count_2) = toc;     
    % multiply cell data with torque arm length and g to find torque 
    data_2(count_2) = dat_2*l_torque_arm*g;  
 
    % update x-axis according to minimum and maximum elapsed time for rpm and 
torque 
    try 
        set(plotGraph_1,'XData',time_1,'YData',data_1); 
        set(plotGraph_2,'XData',time_2,'YData',data_2); 
        xlim([min(time_1(1),time_2(1)) max(time_1(count_1),time_2(count_2))]); 
    catch 
        disp("Interrrupted"); 
    end 
    % MATLAB to Update Plot, creates pause for specified delay and update plot 
    pause(delay); 
 
end 
 
% close serial port and delete unnecessary variables 
fclose(s); 
 
% calculate power from rpm and torque data and plot on new graph 
data_1 = data_1 .* pi/30; % rpm to rad/s unit conversion 
power = (data_1 .* data_2 ).* 10^-3; % watt 
hold on  
grid on 
plot(time_1,power,'-bo',... 
    'LineWidth',1,... 
    'MarkerEdgeColor','k',... 
    'MarkerFaceColor',[.49 1 .63],... 
    'MarkerSize',2); 
ylabel('Power (W)','FontSize',15); 
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xlabel(xLabel_1,'FontSize',15); 
hold off 
 
% convert rotational speed data back to rpm and combine time, rpm, torque, and   
% power data into a single array, this feature is for the users want to save the  
% data in a CSV file 
% data_1 = data_1 .* 30/pi ; 
% last_data = [time_1' data_1' data_2' power']; 
% write combined data array to a CSV file 
% csvwrite('data_18V.csv', last_data) 
 
 
% clear unnecessary variables at the end 
clear count_1 count_2 dat_2 delay max_1 max_2 min_1 min_2... 
    plotGraph_1 plotGraph_2 plotGrid plotTitle_1 plotTitle_2 s s_2 ... 
    scrollWidth serialPort serialPort_2 xLabel_1 yLabel_1... 
    xLabel_2 yLabel_2; 
 
disp('End of the Session'); 

 


