

ME 492

SENIOR PROJECT

Design and Implementation of

A Dynamometer for Small DC Motors

Group E

Erkut Bahadır, Rabia Konuk

Ömer Faruk Seven

09 January 2023

Course Instructor | Assoc. Prof. Hasan Bedir

Abstract

This report discusses the implementation and testing process of a tabletop absorption-type

dynamometer design dedicated to measuring the power characteristics of a DC motor with a

rated power range of 0-50W and a torque range of 0.01-0.3 Nm. The report starts with defining

a dynamometer and providing design limitations. Subsequently, the design configuration is

explained, and the advantages and disadvantages of the selected design are listed. Moreover,

the detail of purchased items and corresponding expenditure amounts are given. Then, critical

activities carried out during the assembly process are highlighted. The following parts briefly

explain the working mechanism and specifications of each mechanical or electrical component.

On the other hand, written computer code is elaborated for the acquisition, assessment, and

visualization of data from sensors. The results obtained from the testing are provided and

discussed. Finally, potential application areas of the project are given an emphasis on possible

future improvements is made.

Table of Contents

List of Figures .. 1

List of Tables .. 1

1. Introduction .. 2

2. Design & Cost .. 3

2.1 Overall Design Configuration .. 3

2.2 Cost ... 4

3. Implementation ... 5

3.1 Assembly ... 5

3.2 Overall System Outlook .. 10

3.3 Code .. 13

4. Results .. 16

5. Discussion .. 18

6. Conclusion .. 20

References .. 23

Appendix A .. 24

Appendix B .. 25

Appendix C .. 26

Appendix D .. 27

Appendix E ... 28

Appendix F ... 29

Appendix G .. 31

1

List of Figures

Figure 1: Example of absorption type dynamometer .. 2

Figure 2: Lathing operation of coupling adapters ... 6

Figure 3: Milling process of the motor holder .. 7

Figure 4: Torque arm, load cell structure, and magnetic hall effect sensor 8

Figure 5: PWM controller in conjunction with a digital multimeter .. 9

Figure 6: Overall System Outlook .. 10

Figure 7: Torque and RPM Plot with 12V of Test Motor Input ... 16

Figure 8: Power Plot with 12V of Test Motor Input ... 17

Figure 9: Torque and RPM Plot with 18V of Test Motor Input ... 17

Figure 10: Power Plot with 18V of Test Motor Input ... 18

List of Tables

Table 1: Pros and cons of the selected design ... 4

Table 2. Cost Analysis ... 5

2

1. Introduction

A device that simultaneously measures a rotating object's torque and speed to calculate its

power is known as a dynamometer. Two types of dynamometers exist: absorption

dynamometers, as shown in Figure 1, and transmission dynamometers. [1]

Figure 1: Example of absorption type dynamometer [2]

Absorption dynamometers measure torque through mechanical friction, fluid friction, or

electromagnetic induction. In contrast, transmission dynamometers measure torque through the

elastic twist of a shaft or by inserting a specific torque meter between shaft portions [1]. In

various industries, dynamometers are utilized for measurement purposes, including the

automotive industry and manufacturing. However, the acquisition of convenient and

appropriate dynamometers and systems for testing small-scale motors can be both rare and

expensive, leading to a waste of time and/or money for customers and designers in search of

motors with specific specifications due to lack of information on the power and torque

characteristics of small-scale motors. In order to address this problem, a tabletop absorption-

type dynamometer, dedicated explicitly to measuring the power characteristics of DC motors

with a rated power range of 0-50 W and a torque range of 0.05-0.3 Nm, was designed and

implemented. During the design process, four significant goals were determined to be met.

Firstly, ease of installation and storage is to be achieved by designing a tabletop dynamometer.

Secondly, the design must allow for easy mounting of the testing motor, enabling the testing of

various motors with ease. Thirdly, compatibility with various shaft diameters must be

incorporated into the design, allowing for testing motors with different shaft diameters. Lastly,

the design should allow for cost minimization in order for the feasibility of prototype

construction. The cost of the dynamometer was determined to be kept below 3000₺, and the

length and width were determined to be 60 cm and 45 cm, respectively. The torque range of the

3

test motors was determined to be 0-0.3 Nm. In literature, several similar studies, such as

"Design and Implementation of a Small Electric Motor Dynamometer for Mechanical

Engineering Undergraduate Laboratory" by Aaron Farley [3] and "Design of a Small Electric

Motor Dynamometer" by William A. Black Jr [4], can be found and have been used as

references. However, the approach taken in this project differs from those in the literature in

terms of using a DC motor as a brake mechanism and utilizing an Arduino for data acquisition.

2. Design & Cost

This section involves overall design configuration and cost analysis, respectively. In the

configuration part, a simple schematic of the overall design is provided to illustrate the working

mechanism and make it more comprehensible, in addition to a pros and cons table in which the

design's advantages and disadvantages are highlighted. Subsequently, another table is provided,

listing all expenditure items in the cost analysis section.

2.1 Overall Design Configuration

The block diagram of the system is provided in Appendix A. As shown in the diagram, there are

two power units, each dedicated to supplying energy to the test and brake motor, respectively.

The speeds of the motors are controlled via PWM dc motor speed controllers, and the

information about the electrical power applied to the motors is acquired with the help of power

meters. There are two shafts, namely Shaft 1 and Shaft 2, extending from each motor. The shafts

are connected with a coupler that works as an intermediary to transfer energy. The magnet that

is attached to the coupler is utilized to measure the rotational speed of the test motor. The

measurement is done by so using a linear hall effect sensor. The magnetic field originating from

the magnet attached to the coupler is detected by the Hall effect sensor in a certain vicinity.

Each time the magnet passes near the hall effect sensor, a signal is generated. Utilizing the time

spanned between consecutive signals; the rotational speed is derived. The torque information

of the test motor is obtained by utilizing a torque arm attached to the outer case of the brake

motor. The force exerted at the tip of the torque arm is measured by a load cell, and then the

signals are transferred to the microcontroller. The signals acquired both from the hall effect

sensor and the load cell is interpreted and transferred to the MATLAB interface set up on a PC.

Then, the measured rpm, torque, and power values of the test motor are plotted in MATLAB

and displayed on the PC panel.

4

The advantages and disadvantages of the overall design configuration are listed in Table 1.

Table 1: Pros and cons of the selected design

PROS CONS

Data acquisition via Arduino is viable. The setup is harder to build.

Generating rpm/torque/power plots on PC is possible. The measurement is less precise.

Power, rpm, and torque values are displayed all together on a

single OLED screen.

It takes up less space due to the sizes of the load cell and the

Hall effect sensor

It is cheaper due to the price of sensors

The signals sent out by sensors are sufficiently clear.

2.2 Cost

A market analysis was conducted in order to determine the most cost-effective parts that meet

the design criteria for the overall system. Aluminum sigma profiles were ordered from a local

manufacturer that provides additional after-sale services such as cutting. The purchased profiles

were cut in pre-selected lengths by the manufacturer for free. On the other hand, the DC motors,

both brake, and test, were purchased from a second-hand store in Karaköy, which sells

mechanic parts at substantially low prices compared to brand-new motors with comparable

specs. In addition, medium-density fiberboard (MDF) as a support base was cut in desired shape

and dimensions and supplied for free by a furniture manufacturer that we have acquaintance

with. Also, the parts at our disposal, such as the microcontroller and adjustable DC power

supply, were utilized to minimize the cost. All the other parts, including the PWM controller,

hall effect sensor, load cell, multimeter, coupling (drill chuck), shaft adapters, bolts, screws,

nuts, washers, and constant DC power supply, were purchased from relevant electronics and

mechanics stores online. In the attempt to manage the cost, equipment presents in the lab and

at our disposal was used for various applications such as milling, cutting, drilling, sanding,

soldering, etc. So, no money was spent on any application whatsoever.

5

All expenditure items are listed in Table 2.

Table 2. Cost Analysis

Part List
Purchase Detail

Piece (#) Cost (₺)

Brake Motor 1 450

Test Motor 1 250

Constant DC Power Supply 1 260

Load Cell 1 155

Multimeter 1 65

Neodymium Magnet 1 10

Hall Effect Sensor 1 25

PWM Controller 1 85

Cables 1 90

Cable Connectors 1 100

Drill Chuck 1 90

Shaft Adapters 1 120

Mounted Bearing 2 210

Motor Holder 1 80

Torque Arm 1 70

Sigma Profile 1.2 (m) 170

Corner Bracket 10 80

T-slot Nut 22 70

Bolt 10 60

Screw 30 70

Washer 24 50

MDF Wood (18mm) 0.27 (m2) N/A

Adjustable Power Supply 1 N/A

Arduino Uno 1 N/A
Total Cost 2560

3. Implementation

This section involves step by step explanation of the assembly process and elaboration on the

overall system outlook, mechanical/electronic components that make up the system, and data

acquisition method.

3.1 Assembly

Overall assembly of the system is supported by the frame. The frame consists of 6 aluminum

sigma profiles which are connected to each other via corner brackets and T-slot nuts. Both of

these connection elements are fully compatible with the selected type of sigma profile. While

connecting these elements together, it was important to obtain perfect alignment to prevent

undesired vibration and wobbling of the system, which could damage the system itself and the

integrity of measurements. Therefore, the frame parts are connected to each other on a flat

6

surface. A set of M6 bolts are used and tightened gradually respectively to prevent tilting of the

frame while tightening the bolts. The general frame structure can be seen in Appendix B. Once

the frame parts are fastened, and alignment is acquired, the bearings are connected to the

framework. The selected bearings from previous design steps needed to be changed during the

final assembly process since the shaft diameters of the brake motor were different on both sides.

The bearings with housings are manufactured within standards and have different housing

dimensions with respect to the bore diameter of the bearing. The usage of bearings with

different housing dimensions would create a vertical alignment problem, resulting in the brake

motor shafts being non-parallel to the ground. Furthermore, the shaft of the brake motor, which

is connected to the test motor shaft via coupling, does not have enough length to support both

bearing and coupling (drill chuck) adapters simultaneously. As a result, we decided to mount

the bearing over the coupling adapter. Thus, the length of the shaft is used more efficiently,

providing enough space for coupling the adapter and bearing at the same time. This created a

different situation from previous design steps; we used 15 mm bore diameter bearings with

housings on both sides of the brake motor. The adapters also have different outer diameters; as

a solution, we applied the lathing process to obtain two adapters with 15 mm outer diameters,

as can be seen in Figure 2. Both the adapters and bearings have set screws to hold the shafts.

We created several notches on the surface of the motor shafts to fix the coupling adapters and

used the notches on the surface of the adapters to fix the bearings again with set screws.

Figure 2: Lathing operation of coupling adapters

As mentioned earlier, we used a drill chuck as coupling. The brake motor side of the drill chuck

is mounted by coupling adapter with threads. The location of the load cell and the direction of

7

the rotation is designed such that it provides self-tightening condition. The adjustable side of

the drill is connected to the test motor. Thus, test motors with different shaft diameters become

compatible with the system. Undesired slipping motion of the shaft is prohibited by the triple-

jaw structure of the adjustable drill chuck.

There are two components that we had to design and get manufactured: The test motor holder

and the torque arm. SolidWorks 2021 is used as CAD software. Both components are produced

from sheet metal with a 3 mm thickness. The dimensions of the test motor holder can be seen

in Appendix C. The motor holder is attached to the frame with 2 x M6 bolts and T-slot nuts.

Due to T-slot nuts, the subassembly could be shifted and fixed at the desired position. At the

upper part of the holder, the slot for the test motor is placed. The slots are designed to provide

the ability of vertical movement, so the user can slide the test motor up-down and avoid vertical

misalignments between the test and brake motors. Likewise, the bolt holes are designed with 2

mm of diameter and 2 mm of vertical sliding slots. However, there had been slight

manufacturing issues resulting in misaligned bolt holes. Also, the casing of the brake motor

mildly interfered with the framework. In return, we had to raise the motor assembly from the

frame to ensure that the interference was eliminated, using a set of washers as spacers, providing

3 mm of elevation. This raising process strengthened the motor holder bolt-hole misalignment.

To compensate, we had to revise the slots of bolt holes via milling, as shown in Figure 3.

Figure 3: Milling process of the motor holder

The torque arm is the other special part of this project. Unlike the motor holder, the torque arm

did not require further machining process after delivery. The design of the torque arm has

changed since another brake motor is used within the project. The dimensions and geometry of

8

the torque arm can be found in Appendix D. The effective length of the torque arm was designed

to be 0.18 m for the calculation of the torque by multiplying the force. However, slight

deformations on the torque arm needle due to manufacturing processes caused nearly 4,5 mm

of deviation; thus, the effective length of the torque arm became 0,1845 m and was used within

MATLAB. The torque arm should be leveled with respect to the ground for the integrity of the

calculations. Any diversions of the angle between the torque arm and the ground would cause

the effective length of the torque arm and, as a result, inaccuracies in torque calculations. While

attaching the torque arm to the brake motor casing with 2 x 4 mm diameter bolts, we checked

with a water gauge to determine whether the torque arm was positioned correctly.

The load cell is calibrated and used for force calculation applied by the torque arm. The torque

arm and load cell combination are shown in Figure 4.

Figure 4: Torque arm, load cell structure, and magnetic hall effect sensor

The load cell is delivered with its own structure, flat plates at the top and below, and a strain

gauge is located between them. While designing the overall system, we considered the height

of the load cell structure. However, a mandatory raising process of the motor assembly from

the framework resulted in increasing the height of the load cell structure. To obtain the correct

height and level of the torque arm, we used four wooden discs placed under the load cell

structure, providing 12 mm of elevation in total.

The magnetic hall effect sensor can again be seen in Figure 4, indicated with a white elliptical.

A magnetic hall effect sensor is used to measure the current RPM of the combined shafts of the

brake and test motors. A neodymium magnet is attached to the coupling for the hall effect sensor

9

to detect each time the magnet passes. The sensor board is placed on top of a block between

two motors to achieve the height required for healthy measurement conditions.

To power the brake motor, a constant power supply is used and adjusted for 12 V output voltage,

as can be seen in Figure 6, indicated with number 6. 12 V output voltage is transferred to the

brake motor via a PWM controller and digital multimeter, illustrated in Figure 5.

Figure 5: PWM controller in conjunction with a digital multimeter

The PWM controller allows the user to transfer energy to the brake motor at the desired level

with a knob, thereby breaking the test motor gradually. A digital multimeter is used to check

the current voltage and current values that appear on the brake motor and be able to avoid the

high currents that can damage the wiring harness and the motor itself while braking.

An adjustable power supply is used to energize the test motor for given voltage levels, depicted

as number 7 in Figure 6. An adjustable power supply ensures that a variety of test motors can

be powered with the system, and different power levels can be used within the same test motor

to see the effect of the input voltage on operating characteristics. The whole system is attached

to a support base of MDF wooden board to ensure that the system is rigid, and the tabletop

design is portable.

10

3.2 Overall System Outlook

The final state of the overall system after the completion of the assembly phase is shown in

Figure 6. For additional pictures of the overall system, please refer to Appendix E.

Figure 6: Overall System Outlook

In Figure 6, the key components that make up the system are represented by numbers and are

listed and explained below:

1. Hall Effect Sensor: A Hall effect sensor is a type of sensor that utilizes the Hall effect to

detect the presence and magnitude of a magnetic field. The Hall sensor's output voltage is

proportional to the intensity of the field. The phenomenon is named after an American

scientist, Edwin Hall. The working principle is the following: A current is applied to a thin

strip of metal in a Hall sensor. In the presence of a magnetic field perpendicular to the

direction of the current, the charge carriers are deflected by the Lorentz force – resulting in

a difference in voltage between the two sides of the strip [5]. There are several ways of

measuring the rotational speed of a shaft, such as using an IR optocoupler, IR line tracking

sensor, and industrial tachometer; however, the Hall effect sensor is the most optimum way

due to budget concerns and minimum signal noise.

2. Load Cell: A load cell is a force transducer that converts a force such as tension,

compression, pressure, or torque into an electrical signal that can be measured and

standardized. As the force applied to the load cell increases, the electrical signal changes

11

proportionally [6]. The load cell used in this project has a maximum load capacity of 5 kg.

The maximum load capacity of the cell is sufficient since the maximum force exerted on

the cell is around 0.5 kg. In addition, the cell has a percentage accuracy of 0.5. The load cell

is also integrated with a signal amplifier, HX711 so that signals can be read from Arduino.

Although there are several ways of measuring the torque of a shaft, such as using a torque

meter, due to budget concerns and high compatibility with Arduino, a load cell was

implemented for the measurement.

3. Microcontroller: A microcontroller is a compact integrated circuit designed to govern a

specific operation in an embedded system. The microcontroller used in the project that is

responsible for data collection and data process is an Arduino Uno. The reason why an

Arduino was selected is due to its high compatibility with sensors, user-friendly interface,

and simplicity of its programming language.

4. PWM Controller: PWM, pulse-width modulation, is a technique of breaking an electrical

signal effectively into discrete parts to reduce the average power delivered by the signal. By

turning the switch between supply and load ‘on’ and ‘off’ at a steady rate, the average value

of voltage fed to the load is controlled. The shorter the switch is ‘on’ compared to ‘off’

periods, the lower the total power supplied to the load and vice versa [7]. The module

selected for the project has an operating voltage of 12-40 V and an output current of up to

10 A, which is sufficient for the brake motor used in this project. Although there are several

ways of controlling the rotational speed of a DC motor, the most effective and precise way

to do this is by using the PWM method.

5. Multimeter: A multimeter is a tool used to detect the amount of electrical current and voltage

difference in a circuit. The digital multimeter being used in this project is able to measure

voltage up to 30V and current up to 10A and was connected to the PWM controller output

to measure the current and voltage of the power being supplied to the brake motor.

6. Constant Power Supply: A power supply is an electrical device that supplies electric power

to an electrical load. The main purpose of a power supply is to convert electric current from

a source to the correct voltage, current, and frequency to power the load. The constant power

supply selected for the project is a DC power supply, which converts an AC input voltage

to a DC output voltage. It is capable of supplying up to 360W of electrical power at 24V &

15A and was deployed to supply energy to the brake motor.

7. Adjustable Power Supply: The adjustable power supply selected for the project is a DC

power supply with an integrated potentiometer to control the output voltage and current. It

is capable of supplying electric power up to 300W at 30V & 10A.

12

8. PC: Data collected from sensors are transferred to the PC for data assessment and

visualization. Acquired data is assessed in MATLAB environment through some form of

mathematical functions and physics equations to generate meaningful results such as torque,

mechanical power, and rpm. Generated results are plotted live on a graph, and the resulting

chart is displayed on the PC screen.

9. Brake Motor: The motor that is used to brake the rotating shaft through reverse rotation is

referred to as “brake motor” throughout the report. The brake motor selected for the project

is a DC servo motor with the following specs: maximum mechanical power output of 66W

at 24V & 3.2A, a maximum rotational speed of 3000Rpm, and a stall torque of 0.3 Nm.

10. Test Motor: The motor to be tested is referred to as the “test motor” throughout the report.

The test motor selected for the project is a permanent magnet brushed DC motor with the

following specs: maximum mechanical power output of 50W at 40V, a maximum

rotational speed of 3300Rpm, and a stall torque of 0.17 Nm.

11. Motor Holder: The motor holder used to fix the test motor in space was produced from

iron sheet metal.

12. Torque Arm: The torque arm used to transfer the absorbed energy to the load cell was

produced from iron sheet metal.

13. Coupling: A coupler is a link or rod transmitting power between two rotating mechanisms

or a rotating part and a reciprocating part. Due to adjustability concerns with a range of

shaft diameters, a drill chuck with an adjustable mouth of 3-13 mm was preferred as a

coupling in this application.

14. Bearing: A bearing is a machine element that constrains relative motion to only the desired

motion and reduces friction between moving parts. Mounted bearings with a bore diameter

of 15 mm were used to prevent the translational motion of the brake motor while allowing

rotational motion. The housing is made out of zinc, whereas the bearing is of chrome steel.

15. Shaft Adapter: Shaft adapters were used to adjust the thickness of the motor shafts to allow

for an assembly with bearings and the drill chuck. The adapters are made out of steel.

16. Sigma Profile: Aluminum sigma profiles were used as a supporting structure to fix the

mechanical system and also to allow for an easy assembly of bearings and the motor holder.

17. Corner Bracket: Aluminum corner brackets were used to fasten sigma profiles together.

18. T-slot Nut: T-slot nuts were slid into profile channels and were used to position brackets

and bearings.

19. Support Base: Medium-density fibreboard was used as a support base to fix the overall

system.

13

3.3 Code

This project involves the use of an Arduino microcontroller to collect real-time data from the

motors’ shaft and the load cell, which measure the motor's rotational speed (rpm) and the force

it applies, respectively. The Arduino program reads the data from these sensors and sends it to

a MATLAB program via a serial connection. The MATLAB program processes the data as it

is received and plots it on a graph in real-time, with two y-axes, one for rpm and one for torque.

The MATLAB program also calculates and plots the power output of the motor based on the

rpm and force data. This allows for the analysis and visualization of the motor's performance

in real time, enabling the identification of patterns, trends, and potential issues. While the

relevant codes are presented in Appendix F and Appendix , the logic and working mechanisms

of the codes are explained below.

The Arduino code is designed to read and report the rpm and force data from a KY-024 linear

magnetic hall effect sensor and HX711 load cell connected to an Arduino Uno microcontroller.

The load cell is used to measure the break motor’s force applied to it, while the magnetic hall

effect sensor is used to measure the rpm of a rotating object.

The code begins by including the necessary libraries, "HX711.h" and "Arduino_JSON.h". The

"HX711.h" library is used to interface with the load cell, and the "Arduino_JSON.h" library is

used to create and manipulate a JSON object to store and transmit the data.

Next, the code defines constants for the pins to which the load cell and Hall sensor are

connected, as well as a calibration factor for the load cell. The code then creates variables for

the HX711 scale object, Val1 and Val2 (which are used to store the sensor data), and an array

for the sensor data. The code also creates variables for RPM calculation, including a float

variable called "rps" and a volatile float variable called "rpm". The "pulses" variable is a volatile

byte variable used to store the number of pulses from the Hall sensor, and "timeold" is an

unsigned long variable used to store the previous time that the Hall sensor was triggered. The

"s" variable is a float variable used to store the current time, and "refsig" is an int variable used

to convert the analog signal from the Hall sensor to a digital signal. The "val" variable is a float

variable used to store the digital value of the incoming analog signals, and "prev_val" is an int

variable used to store the previous value of "val". The "t" and "cur_t" variables are volatile

unsigned long variables used to store the current time and the previous time, respectively. The

"counter" and "limit" variables are used to track the number of times that the current time is the

same as the previous time and to set the rpm to 0 if the count exceeds a certain limit.

14

The code then defines a function called "rpm_calculator" to calculate the rpm based on the time

between successive pulses from the Hall sensor. This function is triggered every time the Hall

sensor sends a pulse (rising edge).

In the setup function, the code initializes serial communication and sets the Hall sensor pin to

INPUT_PULLUP mode. It then initializes the scale object and tares it (resets it to 0), and

attaches an interrupt to the Hall sensor pin to trigger the "rpm_calculator" function. The code

also initializes the variables used in the RPM calculation and delays for 2 seconds.

In the main loop, the code creates a JSON object to store the data. It then reads the values from

the load cell and Hall sensor and stores them in Val1 and Val2, respectively. The code then

checks if the current time is the same as the previous time and increments the "counter" variable

if it is. If the current time is not the same as the previous time, the "counter" variable is reset to

0. If the "counter" variable exceeds the defined "limit", the rpm is set to 0, which means the

motors are stopped by the user. Finally, using the stored variables, the code adds the rpm and

force data to the JSON object and converts it to a string for transmission. In this way, the

Arduino code was completed, and the data could be presented to MATLAB in a format that

MATLAB could read.

The MATLAB code is designed to work in conjunction with an Arduino program, which is

responsible for collecting data from the motor and sending it to the MATLAB program over a

serial connection.

The code begins by setting up a serial connection to the Arduino program and initializing

several variables that will be used to store and plot the data. The code then enters a while loop,

which will continue to run as long as the plot is active. Within the loop, the code reads a string

of data from the serial connection and attempts to decode it using the jsondecode function. If

the data cannot be decoded, it is displayed on the screen.

If the data can be decoded, it is stored in a variable called "data". The code then extracts two

elements from the data variable, "rpm" and "force", which correspond to the rotational speed of

the motor in revolutions per minute and the force applied to the motor, respectively. The code

also increments two counter variables, "count_1" and "count_2", and stores the current elapsed

time in two arrays, "time_1" and "time_2". The values of "rpm" and "force" are then stored in

two additional arrays, "data_1" and "data_2", respectively.

15

The code then updates the plots on the screen to show the data collected so far. The x-axis of

the plots is set to the elapsed time, while the y-axis of the first plot is set to the rpm of the motor,

and the y-axis of the second plot is set to the torque applied to the motor. The code also sets the

limits of the y-axes to fixed values, which are chosen based on the expected range of values for

the rpm and torque data.

After updating the plots, the code waits for a short period of time before repeating the loop.

This delay is controlled by a variable called "delay", which is set to a value of 0.01 seconds.

The purpose of the delay is to give the plots a chance to update and to allow the Arduino

program to send new data to the MATLAB program.

After the while loop ends, the code calculates the power output of the motor by multiplying the

rpm data by the torque data and dividing it by 1000 to convert the result to watts. The power

data is then plotted on a new graph, with the x-axis set to the elapsed time and the y-axis set to

the power output of the motor. Finally, the code includes an optional line for users who want to

save the collected data to a CSV file. Using this line, time, rpm, torque, and power values

collected throughout the program can be presented to users as a CSV file after use.

Overall, the Arduino and MATLAB codes provided in Appendix F and Appendix , respectively,

are designed to collect and analyze data from a small-size DC motor in real time, using a

combination of an Arduino program and MATLAB. The Arduino code measures and calculates

the rotational speed of the motors and the force applied by a brake motor utilizing a magnetic

hall effect sensor and a load cell, respectively. On the other hand, the MATLAB code reads

data from the Arduino program over a serial connection, processes the data to calculate

additional quantities of interest, and plots the data in real time for easy visualization. The code

also saves the data to a file for later analysis. Therefore this project demonstrates the ability to

collect and analyze real-time data from sensors using an Arduino microcontroller and a

MATLAB program. It provides a useful tool for monitoring and studying the performance of a

small-scale DC motors.

16

4. Results

The project collects data from an Arduino microcontroller using a serial connection to a Matlab

program. The Arduino program reads data from a hall sensor and load cell, creates a JSON

object with the data, and sends it to the Matlab program via the serial port. The Matlab program

decodes the data as a JSON object, extracts the rpm and force data, and stores it in variables.

The data collection interval is determined by the speed of the main loop in the Arduino program

and the delay variable in the Matlab program, which is currently set to 0.01 seconds or 100

milliseconds. This interval can be adjusted by modifying the delay variable in the Matlab code.

After we finished the project, we carried out two tests. Since we have only one test motor, we

wanted to see the characteristics of the motor with two different input voltages. In the first test,

we supplied the test motor with 12V.

Figure 7 shows the RPM and Torque values obtained during the test. The test started with the

test motor running with 12V. Then, the input voltage of the brake motor was increased slowly

until the stall condition was obtained when RPM = 0. After the stall condition, the input voltage

of the brake motor had been decreased again gradually until the brake motor stopped. The

maximum torque value is obtained when the stall condition is achieved as proposed, which is

equal to 459.03 mN.m.

Figure 7: Torque and RPM Plot with 12V of Test Motor Input

Figure 8 shows the power plot obtained during the test, again with a 12V input voltage of the

test motor. As expected, the power value during stall conditions is zero since the power is a

17

product of torque and RPM. The maximum power value obtained after the motor stall, while

decreasing the input voltage of the brake motor, equals 9.6432 W. At the same timestamp, the

obtained values of torque and RPM are 171.16 mN.m and 538 RPM. Based on the results, we

can say that the maximum power of the test motor fed with 12V is 9.6432 W, with

corresponding torque of 171.16 mN.m and 538 RPM.

Figure 8: Power Plot with 12V of Test Motor Input

The second test was carried out similarly. The only difference was that the test motor was fed

with 18V instead of 12V. Figure 9 shows the data obtained from the 18V test. The maximum

torque is obtained similarly at the stall condition when RPM = 0 and equals 599,07 mN.m.

Figure 9: Torque and RPM Plot with 18V of Test Motor Input

18

The power plot obtained during the 18V test is shown in Figure 10. The maximum power value

was again obtained after the motor stall, near the point that the brake motor input voltage is 0V.

During the 18V test, the maximum power was measured as 22.408 W, at t = 25.296 s. At the

maximum power point, the corresponding torque value was 280.08 mN.m, and the RPM = 764.

Figure 10: Power Plot with 18V of Test Motor Input

It has been observed that, in both of these tests, the maximum power value is obtained after the

stalling process and near the point that the brake motor voltage input is 0. At this point, the

power plot showed a sudden increase pattern, similar to a spike. This situation could be caused

by measurement errors and instrumentation of the system, both of which are argued further in

the discussion section.

5. Discussion

One of the goals of this project is to define the power characteristics of a DC motor. We obtained

the power value for the test motor of 9.6432 W at 12V operation and 22.408 W at 18V operation.

The power output of the test motor is indicated by the manufacturer as 50W at 40V input

voltage. When the obtained data is compared with the value indicated by the manufacturer, the

measured power characteristics are not contradictory to the manufacturer’s data, and the system

operates with an acceptable error margin. The potential measurement errors may depend on

various reasons, and these sources of error are discussed in this section.

19

The accuracy and consistency of the data collected in the project may be affected by several

sources of error, including sensor error, noise, calibration error, and serial communication error.

It is important to minimize these sources of error to ensure that the data is as accurate and

consistent as possible.

One possible source of error leading to inconsistency or inaccuracy in this project is sensor

error. The sensors used to collect data, such as the hall sensor and the load cell, may not be

perfectly accurate or may drift over time, leading to errors in the data. For example, the hall

sensor may not always produce consistent output for a given rpm, or the load cell may drift over

time and produce inaccurate force readings. To minimize sensor error, it is important to use

high-quality sensors that are designed to be accurate and stable over time and to periodically

recalibrate the sensors to ensure that they are producing accurate readings.

Another possible source of error is noise, which can be caused by external factors such as

electrical interference or mechanical vibrations. Noise can introduce errors into the data,

making it less accurate and consistent. To minimize noise, it is important to eliminate sources

of interference and reduce mechanical vibrations. This can be done by using shielded cables,

filtering the sensor signals, and isolating the sensors from external sources of noise and

vibration.

Calibration error is another potential source of error that can lead to inconsistency or inaccuracy

in the data. The load cell may not be perfectly calibrated, leading to errors in the force data. The

load cell has a calibration factor that is used to convert the raw sensor readings to force values,

and if this factor is not accurate, the force data will be incorrect. To minimize calibration error,

it is important to carefully follow the instructions for calibrating the load cell and to use a known

weight for calibration. It may also be useful to periodically recalibrate the load cell to ensure

that it is producing accurate readings.

Finally, a serial communication error may also lead to errors in the data. There may be errors

in the serial communication between the Arduino and MATLAB programs, such as data loss

or corruption during transmission or improper synchronization of the programs. To minimize

serial communication error, it is important to use a reliable serial connection and to properly

synchronize the Arduino and MATLAB programs. This can be done by using a high-quality

serial cable, ensuring that the baud rate and other communication parameters are correctly

configured, and using error-checking and correction protocols to ensure the integrity of the data.

20

During the studies with the project, it has been noticed that the RPM of the test motor differs

depending on the brake motor’s electrical connection. When the brake motor is not running,

PWM = 0, but plugged into the power supply, the RPM of the test motor is lower than the case

that the brake motor is not connected to the power supply at all. This situation may be caused

by the Back-EMF phenomenon, which is present within the brake motor while plugged into the

power source, and the shaft of the brake motor is rotating due to the test motor rotation. Another

possible reason for this situation is the integrity of the PWM controller module. The PWM

controller might be ‘leaking’ unwanted voltage through the brake motor, which creates a

braking condition even though the brake motor is not working. Both of these situations may

disrupt the accuracy of the testing process.

6. Conclusion

The output of this project for individuals who participated was the successful creation of a

system capable of measuring the specifications of a small-size DC motor using real-time data

acquisition. This required the use of various mechanical engineering principles, such as the

selection and use of motors, bearings, and other components, as well as the design and assembly

of the system. The project also involved the use of data acquisition tools and software, such as

Matlab and Arduino, as well as the creation of cable connections. Working in a group of three

individuals, we were able to effectively manage our time and budget to complete the project.

In addition to gaining technical skills, we also developed teamwork and project management

skills through this project. Overall, the output of this project was a functional system that

demonstrated our understanding of mechanical engineering principles and our ability to apply

these principles in a practical setting.

The purpose of this project is to develop a real-time data collection and analysis system for

small-size DC motors. By using sensors and software, this system is able to measure and record

various performance parameters of the motor, including rpm, torque, and power. The data

collected by the system can be used for a variety of purposes, including quality control, research

and development, motor control, and education.

One potential application of this system is quality control. During the manufacturing process,

it is important to ensure that small-size DC motors meet certain performance specifications.

The real-time data collection and analysis capabilities of this project can be used to monitor and

test the motors during production to ensure that they are operating within the specified range of

21

rpm and torque. This can help to identify and correct defects in the motors before they are

shipped to customers, improving the overall quality of the product.

Another potential application of this system is research and development. By conducting

experiments and gathering data on the performance of small-size DC motors in a variety of

conditions, researchers can study and improve the performance of these motors. For example,

the motors can be tested under different load conditions, temperatures, and operating voltages

to understand how these factors affect the motor's performance. This data can be used to

optimize the design of the motors for specific applications or to develop new technologies for

improving motor performance.

In addition to quality control and research and development, this system can also be used for

motor control in a variety of applications, such as robotics, drones, and other small-scale

systems. By collecting real-time data on the performance of the motor, it is possible to adjust

the power supplied to the motor in real-time based on the load, temperature, or other factors.

This can improve the efficiency and reliability of the motor in these applications.

Finally, this project can also be used as an educational tool to introduce students to the principles

of real-time data collection and analysis. The ability to collect and analyze data in real-time can

be a valuable skill in a variety of fields, including engineering, science, and technology. By

using this project to teach students about real-time data collection and analysis, educators can

help to prepare students for careers in these fields and give them the skills they need to be

successful. In addition, students who learn about real-time data collection and analysis through

this project may be more likely to pursue further studies in these areas, potentially leading to

more advanced research and development efforts in the future.

There are several ways in which the current project, which uses a hall sensor and a load cell to

collect data on a motor, could be improved. One possibility is to add more sensors to the system.

For example, temperature sensors could be used to monitor the temperature of the motor and

its ambient environment, which could provide valuable information on the performance of the

motor and help to detect overheating or other problems. Voltage sensors, on the other hand,

could be used to monitor the power supplied to the motor and the voltage across it, which could

be useful for understanding the electrical characteristics of the motor and for optimizing the

power supply.

Another option would be to use wireless communication to collect data from the motor.

Currently, the Arduino and MATLAB programs communicate through a serial connection, but

22

using technologies like Bluetooth or WiFi could make it easier to collect data from the motor

and allow the project to be used in a wider range of applications. For instance, the project could

be used to test motors that are located far from the data collection equipment or to test motors

that are in motion or are otherwise difficult to access. Additionally, wireless communication

could facilitate the sharing of data with other devices or systems, such as cloud servers or mobile

devices.

Increasing the data collection rate is another avenue for improvement. Currently, the rate at

which data is collected is determined by the speed of the main loop in the Arduino program and

the delay variable in the MATLAB program. By using a faster microcontroller or by reducing

the delay in the MATLAB program, it would be possible to obtain a more detailed and accurate

picture of the motor's performance, which could be particularly useful for studying the

dynamics of the motor.

The use of machine learning algorithms could also enhance the project by enabling it to

automatically identify patterns and trends in the data that are not immediately apparent. This

could enable the project to detect and predict problems with the motor, such as impending

failures, and provide recommendations for addressing these issues. For example, the project

could be trained to recognize patterns in the data associated with different types of failures,

such as bearing failure or winding failure and take preventative action to avoid or minimize the

impact of such failures.

Finally, expanding the range of tests carried out on the motor could provide a more

comprehensive understanding of its capabilities and limitations. By testing the motor under a

wider range of rpm, torque, and load conditions, it may be possible to optimize its performance

for specific applications and better understand its behavior under different conditions. This

could be particularly useful for identifying and addressing problems that may not be apparent

under normal operating conditions.

23

References

[1] J. B. Winther, Dynamometer Handbook of Basic Theory Applications, Cleveland, Ohio:

Eaton Corporation, 1975.

[2] Elektrodyne, "Elektrodyne," Associated Elektrodyne Industries Pvt. Ltd., [Online].

Available: http://www.elektrodyne.com/fhp_low_speed_dyn.html. [Accessed 2 June

2022].

[3] A. Farley, "Design and Implementation of a Small Electric Motor Dynamometer for

Mechanical Engineering Undergraduate Laboratory," University of Arkansas, North

Carolina, 2012.

[4] W. A. B. Jr., "Design of a Small Electric Motor Dynamometer," Massachusetts Institute

of Technology, Cambridge, 1951.

[5] "The Guide to Hall Effect Sensors," [Online]. Available: https://ie.rs-

online.com/web/generalDisplay.html?id=ideas-and-advice/hall-effect-sensors-guide.

[Accessed 07 06 2022].

[6] "Load Cell and Strain Gauge Basics | Load Cell Central," [Online]. Available:

www.800loadcel.com. [Accessed 29 07 2019].

[7] M. Barr, "Introduction to Pulse Width Modulation (PWM)," 01 09 2001. [Online].

Available: https://barrgroup.com/Embedded-Systems/How-To/PWM-Pulse-Width-

Modulation. [Accessed 09 01 2023].

24

Appendix A

Schematic of Design Configuration

25

Appendix B

Technical Drawing of Sigma Profiles

26

Appendix C

Technical Drawing of Motor Holder

27

Appendix D

Technical Drawing of Torque Arm

28

Appendix E

Additional Pictures of Final System

29

Appendix F

Arduino Code

/*
ME 492 - Engine Dynamometer
Group E Senior Project
*/

// include necessary libraries
#include "HX711.h"
#include "Arduino_JSON.h"

// define constants for load cell and Hall sensor pins and calibration factor
#define LOADCELL_DOUT_PIN 3
#define LOADCELL_SCK_PIN 4
#define Hall_Sensor_D 2
#define calibration_factor -1000

// create variables for HX711 scale, Val1 and Val2, and array for sensor data
HX711 scale;
int Val1=0;
int Val2=0;
int i = 1;
const int numsensor = 2;
int data[numsensor];

// create variables for RPM calculation
float rps;
volatile float rpm;
volatile byte pulses;
unsigned long timeold;
float s;
int refsig=0;//for converting the analog signal coming from hall sensor to digital
through arduino code
float val;//the digital value of the incoming analog signals
int prev_val=0;
volatile unsigned long t,cur_t;//time variables
int counter = 0;
int limit = 10;
unsigned long prev_t = 0;

// function to calculate RPM
void rpm_calculator() {
 cur_t=micros();
 rpm = 1000000*60/(cur_t-t);
 t=cur_t;
}

// setup function
void setup() {

 // initialize serial communication and set Hall sensor pin to INPUT_PULLUP mode
 Serial.begin(9600);
 pinMode(Hall_Sensor_D,INPUT_PULLUP);
 // initialize scale and tare it
 scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);

30

 scale.set_scale(calibration_factor); //This value is obtained by using the
SparkFun_HX711_Calibration sketch
 scale.tare(); //Assuming there is no weight on the scale at start up, reset the
scale to 0

 // attach interrupt and initialize variables for RPM calculation
 attachInterrupt(digitalPinToInterrupt(2),rpm_calculator,RISING); //attaching
the interrupt and declaring the variables, one of the interrupt pins on Nano is
D2, and has to be declared as 0 here
 pulses=0;
 rps=0;
 rpm=0;
 timeold=0;
 s=0;

 // delay for 2 seconds
 delay(2000);

}

// main loop
void loop() {
 // create JSON object to store data
 JSONVar json;

 // read values from load cell and Hall sensor
 Val2=(scale.get_units(1));
 Val1=digitalRead(Hall_Sensor_D);

 // store sensor data in array
 data[0] = Val1;
 data[1] = Val2;

 // check if current time is the same as previous time
 // if it is, increment counter
 // if it is not, reset counter
 if(t==prev_t){
 counter ++;
 }
 else{
 counter = 0;
 }
 prev_t = t;

 // if counter exceeds limit, set rpm to 0
 if(counter > limit){
 rpm = 0;
 }

 // add rpm and force data to JSON object
 json["rpm"] = rpm;
 json["force"] = Val2*4.3;
 String tmp = JSON.stringify(json);
 Serial.println(tmp);

}

31

Appendix G

MATLAB Code

% ME 492 - Engine Dynamometer
% Group E Senior Project
% real time data logger

% clear all variables and close any open serial port connections
clear all
clc
delete(instrfind({'Port'},{'COM10'}));

% define plot properties and function variables
plotTitle_1 = '';
xLabel_1 = 'Elapsed Time (sec)';
plotGrid = 'on';
delay = 0.01;
l_torque_arm = 0.1845; % m
g = 9.80665;
% function variables
time_1 = 0;
time_2 = 0;
data_1 = 0;
data_2 = 0;
count_1 = 0;
count_2 = 0;

% set up plot with two y-axes and legend
hold on

yyaxis left;
plotGraph_1 = plot(time_1,data_1,'-bo',...
 'LineWidth',1,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',2);
ylim([0 1500]);
ylabel('Motor Speed (rpm)','FontSize',15);

yyaxis right;
plotGraph_2 = plot(time_2,data_2,'-ro',...
 'LineWidth',1,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.17 .36 .21],...
 'MarkerSize',2);
ylim([0 750]);
ylabel('Torque (mN.m)','FontSize',15);

legend('rpm','torque')
title(plotTitle_1,'FontSize',25);
xlabel(xLabel_1,'FontSize',15);
grid(plotGrid);

hold off

% open serial port
s = serialport('COM10',9600);
fopen(s);

32

% start timer
tic
i = 1;

% loop until plot is active
while ishandle(plotGraph_1)

 % read data from serial as string and decode JSON object
 data = fscanf(s, '%s');
 try
 data = jsondecode(data);
 catch
 disp(data);
 end

 % extract rpm and force data from JSON object
 dat_1 = data.rpm;
 dat_2 = data.force;

 % extract elapsed time and update time and data arrays for rpm
 count_1 = count_1 + 1;
 time_1(count_1) = toc;
 data_1(count_1) = dat_1;

 % extract elapsed time and update time and data arrays for torque
 count_2 = count_2 + 1;
 time_2(count_2) = toc;
 % multiply cell data with torque arm length and g to find torque
 data_2(count_2) = dat_2*l_torque_arm*g;

 % update x-axis according to minimum and maximum elapsed time for rpm and
torque
 try
 set(plotGraph_1,'XData',time_1,'YData',data_1);
 set(plotGraph_2,'XData',time_2,'YData',data_2);
 xlim([min(time_1(1),time_2(1)) max(time_1(count_1),time_2(count_2))]);
 catch
 disp("Interrrupted");
 end
 % MATLAB to Update Plot, creates pause for specified delay and update plot
 pause(delay);

end

% close serial port and delete unnecessary variables
fclose(s);

% calculate power from rpm and torque data and plot on new graph
data_1 = data_1 .* pi/30; % rpm to rad/s unit conversion
power = (data_1 .* data_2).* 10^-3; % watt
hold on
grid on
plot(time_1,power,'-bo',...
 'LineWidth',1,...
 'MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',2);
ylabel('Power (W)','FontSize',15);

33

xlabel(xLabel_1,'FontSize',15);
hold off

% convert rotational speed data back to rpm and combine time, rpm, torque, and
% power data into a single array, this feature is for the users want to save the
% data in a CSV file
% data_1 = data_1 .* 30/pi ;
% last_data = [time_1' data_1' data_2' power'];
% write combined data array to a CSV file
% csvwrite('data_18V.csv', last_data)

% clear unnecessary variables at the end
clear count_1 count_2 dat_2 delay max_1 max_2 min_1 min_2...
 plotGraph_1 plotGraph_2 plotGrid plotTitle_1 plotTitle_2 s s_2 ...
 scrollWidth serialPort serialPort_2 xLabel_1 yLabel_1...
 xLabel_2 yLabel_2;

disp('End of the Session');

